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Metric Data: Clustering 

Sudipto Guha
UPENN

(Semi) Metric spaces

{ A set of points X 
z D(xi,xj) ¸ 0
z D(xi,xi)=0
z D(xi,xj)=D(x

j
,x

j
)

z D(xi,xj)+D(xj,xk) ¸ D(xi,xk)

{ How do we store n2 numbers?

Oracle Distance Functions 

{ You do not.

{ Given xi,xj compute d(xi,xj)
{ Or better: Is D(xi,xj) ¸ r
{ Examples?

{ How do you verify that the oracle is 
giving you a metric?

The Assumptions

{ You can not.
{ Many algorithms rely on the assumption 

for running time …

{ Unintended Consequences:  The only 
points your algorithm uses must belong 
to the input. 

The Plan

{ Clustering …

{ But
z What is clustering ?

You tell me …

{ An endless list 
{ Are you clusters fat?
{ Do they drink coffee? 

z Do they have central points ? Metric ) Sphere
z Does a point belong to one cluster only?
z Do we cluster all the points all the time?

{ This talk: yes, yes & yes.
{ But these are by no means the only choices.

{ Then again what CAN you do in a streaming setting?
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Clustering in a streaming model

{ We can only store small amount of 
information ) Central points
z Each point assigned to its nearest point

{ Sliding windows, clustering 1-ε fraction 
…

{ What is the measure of clustering?

Two Problems

{ Cluster centers: S={s1,s2,…sk} 

{ Covering by discs:
z K center: MinS maxi minj D(xi,Sj)

{ More robust measure
z K median: MinS ∑i minj D(xi,Sj)

K Center 

{ Charikar, Chekuri, Feder, & Motwani `97

{ O(k) space, factor 8 approximation.
z (More later)

{ Statutory warning: NP hard to approximate better 
than 2

z Points to ponder: Does that imply anything for the 
streaming model? What is k?

z Any algorithm achieving a factor better than 2 must 
store all the points. 

An offline algorithm

{ Hochbaum Shmoys `85
{ Gonzales `85

z Pick the first point as s1, S={s1}
z Pick the point farthest from S
z Repeat the above k-1 times.

{ Why does this work?  

Approximation Algorithms: Quest for 
Lower Bounds 

{ Run the algorithm for one more step and get 
k+1 points, S’=S [ {x}

{ Let r=smallest pairwise distance in S’
{ Claim OPT ¸ r/2

z If not then OPT must have k+1 centers…
{ Observe: all points are distance r from S

{ Witness of a lower bound of r

A First Cut

{ Maintain k points at distance r from each 
other

{ New point arrives 
z Close: Ignore
z Far: Merge closest pair

{ Does not work
{ Error builds up.
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The ultimate truth: Doubling?

{ Grow more …

{ In particular grow by β factor

Proof

{ Invariant
z k+1 points at distance r
z Keep points sep. by β r
z R(r) radius

{ New bound: p
{ p ¸ β r  
{ R(p)=β p + R(r)

=β p + R(t/β)
=β2p/(β-1)

{ β=2; R(p)=4p
{ OPT ¸ p/2

pβ p · R(r)

Other properties

{ Clusters, once merged stay together.
{ An incremental/online model

z A small space online algorithm is a streaming 
algorithm.

{ Randomization ) 5.4 (choose β at random)

{ Diameter measure, clique partitions…

Epilogue: K center

{ Note 
z 2+ε using O(kε-1 log Δ) space is trivial.
z 2+ε using O(kε-1) space and 2 passes is also trivial.

{ Δ is the ratio of min to max distance ) Precision 
parameter

{ Dependence on precision is highly avoidable (whenever 
possible) in geometric problems.

{ Guha, Khuller, McGregor `xx
z 2+ε approximation using Oε(k) space, single pass

K median 

{ Guha, Mishra, Motwani, & O’callaghan ’00
{ Meyerson ‘01
{ Charikar, Panigrahy, & O’callaghan ’03

1. O(nεk) space O(21/ε) approx
2. O(k log2 n) space O(1) approx

Divide & Conquer/Merge-Reduce

{ ~Bentley late `70’s

Total Space Required: 
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Divide & Conquer/Merge-Reduce

{ ~Bentley late `70’s

Summarize a pointset for clustering?

{ Cluster, of course ☺

{ (n/k)1/2 pieces, size (nk)1/2 each.
{ Each piece sends the k medians 

z (more on this)
{ Cluster the (nk)1/2 medians

Consider 3 partitions

{ Arbitrary, represented by the colors

Consider 3 partitions

{ Consider just the reds
{ 9 a clustering of twice its share

Consider 3 partitions

{ We should count importance …

2

3 3

9 clustering 2 OPT
) 2α OPT soln

Consider 3 partitions

{ We should count importance …

2

3 3

9 clustering 2 OPT
) 2α OPT soln

“Send Back” & use fictitious center
) 9 (1+2α) OPT
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Consider 3 partitions

{ We should count importance …

2

3 3

9 clustering 2 OPT
) 2α OPT soln

“Send Back” & use fictitious center
) 9 (1+2α) OPT

“Send Back” & use a point we have
) 9 2(1+2α) OPT

Consider 3 partitions

{ We should count importance …

2

3 3

9 clustering 2 OPT
) 2α OPT soln

“Send Back” & use fictitious center
) 9 (1+2α) OPT

“Send Back” & use a point we have
) 9 2(1+2α) OPT

Cluster of clusters 
) 2α(1+2α) OPT

Consider 3 partitions

{ We should count importance …

2

3 3

9 clustering 2 OPT
) 2α OPT soln

“Send Back” & use fictitious center
) 9 (1+2α) OPT

“Send Back” & use a point we have
) 9 2(1+2α) OPT

Cluster of clusters 
) 2α(1+2α) OPT

Total ) (2α + 2α(1+2α)) OPT

That’s it really!

{ Did not need exactly k centers in 
intermediate step

9 clustering 2 OPT
) 2β OPT soln

“Send Back” & use fictitious center
) 9 (1+2β) OPT

“Send Back” & use a point we have
) 9 2(1+2β) OPT

Cluster of clusters 
) 2α(1+2β) OPT

Total ) (2β+ 2α(1+2β)) OPT

A dash of facilities

{ Facility location Problem
z There is a cost fj of building a “center’’ at node j. 

{ Another day, another adventure…

{ This talk: Imagine that the number of 
clusters are not fixed
z Cost of each cluster is f
z Minimize sum of distances plus the cost of clusters

A simple algorithm

{ Meyerson ‘01
{ Maintain a set of centers S

z New point xj
z D(xj,S) =δj
z Declare xj as a center with prob. δj/f
z OW xj assigned to nearest in S
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Analysis

a=Average radius…

Rings in powers of 2

Focus on a specific ring

Expected assignment cost before 
1st center is opened: f (why?)

Any node pays at most thrice its 
contribution to OPT

Cost=2f (log n) 

+ ∑j [  3dj + f(3dj)/f]

a

2a

Something’s 
Missing!

j

dj

Analysis

Node pays a+dj +f(a+dj)/f

Summed over: 

2f + 2OPT + 2Self-contib to OPT

2f (log n) + 6(Self-contrib OPT)

Per cluster …

a

Net: 2f(1+log n) (k)+ 8OPT

Enter the Magic Birdie

{ Tells you OPT
{ You set

z f=OPT/(k log n)

{ (Expected)
z Net cost = 10 OPT
z Number of Medians = 10k log n

{ Run O(log n) times in parallel

If you hate birdies…

{ Easy solution: Guess OPT
z log Δ guesses
z Not very desirable

{ Use previous k-center approach of 
z keeping a bound 
z increasing by β
z Showing contributions do not add up
z Desirable (the contrib of CPO in this context)
z Lots of equations /

Recap

{ A Metric Space assumption provides a 
surprising amount  of information.

{ We can cluster in streaming model
z Geometric Phases
z Need

{ Small Witnesses
{ Decomposition Theorems

z Open Q. Is the randomization necessary?

Time (not) for …


